
Journal of Computational Physics 182, 478–495 (2002)
doi:10.1006/jcph.2002.7179

Computational Solution of Two-Dimensional
Unsteady PDEs Using Moving Mesh Methods

G. Beckett,1 J. A. Mackenzie, A. Ramage, and D. M. Sloan

Department of Mathematics, University of Strathclyde, Livingstone Tower, 26 Richmond Street,
Glasgow G1 1XH, Scotland

E-mail: d.sloan@strath.ac.uk

Received November 15, 2001; revised April 17, 2002

Numerical experiments are described which illustrate some important features of
the performance of moving mesh methods for solving two-dimensional partial dif-
ferential equations (PDEs). Here we are concerned with algorithms based on moving
mesh methods proposed by W. Huang and R. D. Russell [SIAM J. Sci. Comput. 20,
998 (1999)]. We show that the accuracy of the computations is strongly influenced
by the choice of monitor function, and we present a monitor function which yields
a higher rate of convergence than those that are commonly used. In an earlier paper
[G. Beckett, J. A. Mackenzie, A. Ramage, and D. M. Sloan, J. Comput. Phys. 167,
372 (2001)], we demonstrated a robust and efficient algorithm for problems in one
space dimension in which the mesh equation is decoupled from the physical PDE and
the time step is controlled automatically. The present work extends this algorithm to
deal with problems in two space dimensions. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Many unsteady problems governed by partial differential equations (PDEs) have solutions
with regions of high variation, such as boundary layers or moving wave fronts. Problems
of this type present significant challenges to computational scientists who wish to design
numerical algorithms which will yield accurate approximations in a computationally effi-
cient manner. Since the early 1990s a great deal of research effort has been focused on the
development of adaptive moving mesh methods for solving problems with steep solutions.
These methods generally use a fixed number of mesh points, and the points are continuously
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relocated as time evolves so that, at any instant in time, the spatial density of the mesh points
is proportional in some sense to the solution variation. In two space dimensions, several
methods have been developed to determine mesh movement. The moving finite element
method of Miller and Miller [17], for example, determines the mesh movement by minimis-
ing the residual for the governing PDEs. One disadvantage of this method is that certain
penalty functions have to be introduced to prevent singularity of the mass matrix. Subsequent
work by Baines [3] has provided a better understanding of the moving finite element method.
Here, we are concerned with the moving mesh strategy developed by Huang and Russell [13,
14]. This is based on the solution of a system of MMPDEs that is derived from the gradient
flow equation of a functional that takes account of mesh adaptation, quality control, and
smoothness. It has been used successfully for generating both structured and unstructured
meshes for a number of problems [9]. Moving mesh methods for problems in three space
dimensions have been proposed recently by Li et al. [15]. The approach adopted there is
based on the theory of harmonic maps that has been exploited by Dvinsky [10] for grid
generation.

No general convergence analysis has been produced for moving mesh methods, and
insight into the behaviour of the methods has to be obtained by means of numerical exper-
iments. Despite the satisfactory degree of success that has already been attained, further
developments are desirable in terms of formulation and implementation before the methods
can be widely recognised as robust tools in the computational solution of PDEs. Several
developmental steps have been taken since the MMPDEs were introduced: Cao et al. [8]
have given some insight into the role played by the monitor function, and they have given
some guidelines concerning the choice of monitor function. A recent paper by Huang [12]
focuses on several practical aspects of formulating and solving MMPDEs. Among other
things, he considers spatial balance, scaling invariance, and an algorithm for solving the
system of discretised equations.

The objective of this paper is threefold. First, we give a convincing demonstration that the
accuracy of the computations is strongly dependent on the choice of monitor function, and
we present a monitor function which yields a higher rate of convergence than those which are
currently commonly used. Second, we describe a robust and efficient algorithm for solving
the system of discretised equations in which the mesh equations are decoupled from the
physical PDE. Finally, an efficient time-step control mechanism is incorporated into the
algorithm. In an earlier paper [7], we considered these formulation and implementation
matters for unsteady PDEs in one space dimension, and the current work may be regarded
as an extension of the one-dimensional results. It is hoped that our findings will be a
useful addition to the valuable guidelines offered by Huang [12] for problems in two space
dimensions.

The structure of the paper is as follows. In Section 2, we present the two-dimensional
Burgers equation which will be adopted as a model problem for the computational exper-
iments. We also describe the moving mesh method, including the design of the monitor
function and the structure of the decoupled solution algorithm. Section 3 deals with the
discretisation of the model problem and the MMPDE and includes details of the time-step
control mechanism and the preconditioned iterative method used for solving the linear
systems which arise in the solution of the moving mesh equations. The results of the nu-
merical experiments are presented in Section 4, with conclusions and comments following
in Section 5.
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2. OVERVIEW OF ADAPTIVE ALGORITHM

2.1. Model Problem

In this paper, numerical computations are performed on the two-dimensional viscous
Burgers equation

∂u

∂t
+ �u

∂u

∂x1
+ �u

∂u

∂x2
= ε�u, (x1, x2) ∈ � = (0, 1)2, t > 0, (2.1)

with initial and boundary conditions chosen such that

u(x1, x2, t) = (1 + exp(�))−1,

where

� = 1

2ε
(�x1 + �x2 − t − t0).

We are interested in the singularly perturbed regime for which 0 < ε � max(|�|, |�|). Then
the solution has a steep interior planar layer of thickness O(ε) which propagates across the
domain with constant velocity. The constants � and � determine the angle � between the
normal to the direction of propagation and the line x1 = x2 such that

� = cos(�) + sin(�) and � = cos(�) − sin(�).

For ease of notation we will often refer to the physical coordinates as x = x1 and y = x2.

2.2. The Moving Mesh PDE

In multiple dimensions, a moving mesh method may be considered as a way of con-
structing an invertible time-dependent grid mapping �(x, t) : � → �C between the phys-
ical domain � and a prescribed computational domain �C . In order to avoid potential
mesh crossings or foldings we use the map �(x, t) rather than the inverse map x(�, t) in
the subsequent analysis (see, for example, the discussion in [10]). A mesh 	 on � is then
generated as the preimage of a fixed grid 	C on �C . For the grid mapping to be useful, it
must satisfy a number of properties. First, it must be inexpensive to construct, relative to
the cost of solving the physical problem: to this end, it is desirable that the mapping �(x, t)
be obtainable using a standard numerical discretisation on the grid 	C . Second, �C should
be convex and have a simple geometric structure, for example a regular polyhedron. Third,
at time t the mesh 	 should have nodes clustered in order to resolve steep layers in the
physical solution: one would expect to be able to solve (2.1) to a prescribed tolerance with
significantly fewer grid nodes for a solution-adaptive grid than for a uniform grid.

In this paper we choose �C to be the unit square (0, 1) × (0, 1) and 	C to be a uniform
grid with element size h = N−1 in both the �1 and �2 directions. For ease of notation, we
will often refer to the computational coordinates as � = �1 and � = �2.

As introduced in [14], in the moving mesh PDE approach, the mapping �(x) correspond-
ing to a fixed value of t is chosen in order to minimise the functional

I [�] = 1

2

∫
�

2∑
i=1

(∇�i )
T G−1(∇�i ) dx, (2.2)
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where G is a 2 × 2 symmetric positive definite matrix referred to as a monitor matrix and
∇ is the gradient operator with respect to x. The Euler–Lagrange equations associated with
(2.2) are

∇. (G−1∇�i ) = 0, i = 1, 2. (2.3)

The moving mesh PDEs are then defined to be the modified gradient flow equations

∂�i

∂t
= P

�
∇. (G−1∇�i ), i = 1, 2, (2.4)

derived from (2.3). In Eq. (2.4), � > 0 is a user-prescribed temporal smoothing parameter,
which modifies the time scale. The spatial balance operator P is a positive function of (x, t)
chosen such that the mesh movement has a uniform time scale throughout �.

In practice, it is convenient to switch the roles of the dependent and independent variables
in (2.4) to give

�
∂x
∂t

= P

(
2∑

i, j=1

(ai . G−1a j )
∂2x

∂�i∂� j
−

2∑
i, j=1

(
ai .

∂G−1

∂� j
a j

)
∂x
∂�i

)
, (2.5)

where ai = ∇�i .
To complete the specification of (2.5), appropriate and meaningful boundary conditions

g(�, t), � ∈ ∂�C must be specified. These boundary conditions are obtained using a one-
dimensional moving mesh equation, as described in [14]. We briefly summarise the approach
here. Let 
 be a segment of the boundary ∂� and let 
C be the corresponding segment of
∂�C . Let s ∈ (0, l) and 	 ∈ (0, lC ) denote arclength along 
 and 
C , respectively. Then the
mapping s : 
C → 
 is determined by solving the one-dimensional equation

�
∂s

∂t
= P

∂

∂	

(
M

∂s

∂	

)
, 	 ∈ (0, lC ),

s(0) = 0, s(lC ) = l.

(2.6)

The monitor function M is derived by projecting the two-dimensional monitor matrix G
along the boundary. Specifically, if ŝ(	 ) denotes the unit tangent vector along the boundary,
then

M(	, t) = ŝT G ŝ.

The choice of spatial balance operator P in (2.5) and (2.6) is crucial to the reliability of
the moving mesh method. In [14], the operator is chosen as P = 1/ D

√
det(G), where D is

the dimension of the spatial domain �. This choice is motivated by the work of Dvinsky
[10] on generating unique grid functions using the theory of harmonic mappings. More
recently, Huang [12] proposed choosing P in order to limit the variation over the domain
of the coefficients in (2.5) and (2.6). This is done by setting

P =
(

2∑
i=1

a2
i,i + b2

i

)− 1
2

, ai, j = ai . G−1a j , bi = −
2∑

j=1

(
ai .

∂G−1

∂� j
a j

)
(2.7)
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in (2.5), which simplifies to

P = (M2 + (M� )2)−
1
2 (2.8)

in (2.6). With this choice of P , the coefficients of (2.5) and (2.6) are all of size O(1). In this
paper, we choose the spatial balance parameter to be as in (2.7) and (2.8).

2.3. Choice of Monitor Matrix

The selection of an appropriate monitor matrix is fundamental to the success of mesh
adaptation. In this paper, we shall consider the monitor matrix proposed by Winslow [19],

G =
[
w 0
0 w

]
, (2.9)

where w is a strictly positive, integrable function called a monitor function. We will perform
numerical experiments for two distinct choices: the popular arclength (AL) monitor function

w(x, t) =
√

1 + |∇u(x, t)|2, (2.10)

and a generalisation of the BM monitor function proposed by Beckett and Mackenzie [4–6],

w(x, t) = 
(t) + |∇u(x, t)| 1
m , (2.11)

where m is a positive constant which acts as a smoothing factor on the solution gradient—the
analysis presented in [4–6] suggests that m = 2 is an appropriate value for a second-order
approximation and, as such, will be used for all numerical experiments in this paper. The
function 
(t) is strictly positive and regulates the grid, ensuring that mesh starvation does
not occur in regions of the domain where there is little or no spatial variation in the solution.
In [4–6] the authors show that for steady boundary value problems in one dimension,

 may be chosen in order to maintain a constant ratio of points inside boundary layers
to points in the rest of the domain. The validity of this result was demonstrated for a
more general class of singular perturbation problems in Beckett et al. [7]. In this paper
we generalise the construction of 
 to problems in more than one space dimension by
defining


(t) = 1

meas(�)

∫
�

|∇u(x, t)| 1
m dx.

It is shown in [7] that in one space dimension this choice of 
(t) ensures that approximately
half of the grid points are located outside the steep layers. This obvious extension to two
space dimensions is designed to control the intensity of mesh concentration. With 
 selected
in this way, the floor on the BM monitor matrix is adjusted automatically in proportion to
the measure of the (smoothed) solution gradient. Thus for problem (2.1), as the solution
front propagates across the domain for t ∈ (0, 0.75), increasing in width, the floor 
 also
increases to maintain the node density outwith the layer region. Conversely, for t > 0.75,

 decreases as the front width decreases.
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pass = 0; x = xn ; u = un ;
while (pass < MAXPASS),

ox = x;
Evaluate monitor matrix for (x, u);
Integrate MMPDE forward to obtain new

grid x at time tn+1;
Integrate PPDE forward to obtain new solution u at time tn+1;
if (‖x − ox‖l∞ < MTOL), break;
pass = pass + 1;

end while;
xn+1 = x, un+1 = u;

FIG. 1. Decoupled algorithm for multipass moving mesh method.

2.4. Iterative Solution Algorithm

Given the current approximation (xn, un) at time tn and a time step �tn , we now de-
scribe the procedure for integrating forward in time to the new time level tn+1 = tn + �tn .
One approach would be to couple the discretised systems for the moving mesh equation
(MMPDE) and the physical equation (PPDE) together to give a single nonlinear system for
(xn+1, un+1). However, there are a number of disadvantages to this approach. First, the size
of the resulting system would be large and even for moderate grid densities may be pro-
hibitive. Second, this approach does not easily admit different convergence criteria for the
mesh and physical solution. As noted in Babuška and Rheinboldt [2], it is not necessary to
compute the mesh with the same level of accuracy as the physical solution. In the interests of
reducing computational costs, one would like to exploit this property. Third, as mentioned
previously, a user may wish to have control over the discretisation of the physical problem
and such flexibility is severely restricted by coupling the unknowns together into one large
nonlinear system.

We therefore integrate forward in time in an iterative manner, solving for the grid and
physical solution alternately. The algorithm is summarised in Fig. 1 (described in a pseu-
docode). Specific details of the individual components will be provided in Section 3: here,
we only discuss features of the overall algorithm. At the start of each pass the current mesh
is stored—in addition to being utilised in the mesh convergence test it will also be required
in a simple mesh error indicator in the adaptive time-step selection procedure. Then, after
approximating the monitor matrix, the mesh is integrated forward to the new time level. This
involves first integrating each boundary mesh equation forward to provide boundary condi-
tions for the interior mesh equation. Once we have the mesh equation at the new time level,
we integrate forward the physical PDE. This iteration is repeated until either the distance
(measured in the l∞ norm) between two successive grids falls below a specified tolerance
MTOL or the maximum number of iterations MAXPASS is reached. For efficiency reasons
it is strongly desirable to perform only a small number of iterations at each time step—in
this paper MAXPASS = 4.

The approach described in [12] is equivalent to setting MAXPASS = 1 in the algorithm,
performing a single iteration at each time step. However, as demonstrated in [7], this results
in the grid lagging behind the solution of the physical PDE and severely impedes the size of
time step which may be taken. Because of this, we advocate the use of a four-pass scheme,
that is, setting MAXPASS = 4. If the grid converges, the loop will be stopped before four
passes have been completed. However, for time-dependent problems this is seldom observed
in practice.
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3. DETAILS OF NUMERICAL ALGORITHM

3.1. Discretisation of MMPDE

For a Winslow-type monitor matrix (2.9), the MMPDE (2.5) simplifies to

∂x
∂t

= P(ax�� + bx�� + cx�� + dx� + ex�), (�,�) ∈ �C ,

x(�,�, t) = g(�,�, t), (�,�) ∈ ∂�C ,

(3.1)

where

a = 1

�w

(
x2

� + y2
�

)
J 2

, b = − 2

�w

(x� x� + y� y�)

J 2
, c = 1

�w

(
x2

� + y2
�

)
J 2

,

d = 1

� J 2

(
− ∂

∂�
(w−1)

(
x2

� + y2
�

)+ ∂

∂�
(w−1)(x� x� + y� y�)

)
,

e = 1

� J 2

(
∂

∂�
(w−1)(x� x� + y� y�) − ∂

∂�
(w−1)

(
x2

� + y2
�

))
,

and J = x� y� − x� y� is the Jacobian of the grid mapping. Equation (3.1) is a coupled system
of two equations for the mappings x and y. However, if the system is linearised by freezing
the coefficients a, b, c, d , and e, we may decouple (3.1) into two scalar equations for x and y.

We now describe the discretisation of the system (3.1), focusing on the equation for x :
the equation for y may be treated similarly. For ease of notation, we start by defining the
following difference operators:

D�� xi, j = N 2(xi+1, j − 2xi, j + xi−1, j ),

D��xi, j = N 2

4
(xi+1, j+1 − xi−1, j+1 − xi+1, j−1 + xi−1, j−1),

D0
� xi, j = N

2
(xi+1, j − xi−1, j ).

Operators in the � direction are defined similarly.
To discretise (3.1) on the uniform computational grid 	C , we freeze the coefficients

and replace the spatial derivatives by appropriate second-order central difference operators.
Numerical integration from time tn to tn + �tn is effected using an implicit backward Euler
method. This gives rise to the system

�
xn+1

i, j − xn
i, j

�tn
= Pi, j

(
an

i, j D�� xn+1
i, j + bn

i, j D��xn+1
i, j + cn

i, j D��xn+1
i, j

+ dn
i, j D0

� xn+1
i, j + en

i, j D0
�xn+1

i, j

)
, 1 < i, j < N , (3.2)

xi, j = g1(�i ,� j ), (�i ,� j ) ∈ ∂�C .

In Eq. (3.2), the coefficients a, b, c, d, and e are discretised at the old time level tn using
central differences. The monitor function w is approximated by

wi, j = (1 + (D0
x ui, j

)2 + (D0
yui, j

)2) 1
2 ,
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for (2.10), and

wi, j = 
 + ((D0
x ui, j

)2 + (D0
yui, j

)2) 1
2m ,

where


 = 1

area(�)

N−1∑
i, j=0

((
D0

x ui, j
)2 + (D0

yui, j
)2) 1

2m area(�i, j ),

for (2.11), with

D0
x ui, j := (D0

� xi, j
)−1

D0
� ui, j + (D0

�xi, j
)−1

D0
�ui, j

and similarly for D0
y .

The one-dimensional MMPDE (2.6) applied on each boundary segment must also be
discretised. This is done in a manner analogous to the above and gives

�
sn+1

j − sn
j

�tn
= Pj D0

	

(
M j D0

	 sn+1
j

)
. (3.3)

3.2. Discretisation of Physical PDE

In this section, we shall outline the discretisation of (2.1). There is considerable flexibility
in how one solves the physical problem and this flexibility can be attributed to the iterative
solution procedure described in Section 2.4, in which the mesh and physical solution are
integrated forward in time in a decoupled manner.

Using the grid mapping x(�, t), problem (2.1) may be transformed into computational
coordinates to give

J v̇ + F̂� + Ĥ� = (K̂v� )� + (L̂v� )� + (L̂v�)� + (M̂v�)�, (3.4)

where v(�,�, t) = u(x(�,�), y(�,�), t) and the coefficients are defined as

F̂ = �

2
v2(y� − x�) + v(ẏx� − ẋ y�),

Ĥ = �

2
v2(x� − y� ) + v(ẋ y� − ẏx� ),

K̂ = ε
(
x2

� + y2
�

)
J

,

L̂ = −ε(x� x� + y� y�)

J
,

M̂ = ε
(
x2

� + y2
�

)
J

.

If the solution-adaptive grid is to be effective, this transformation should smooth out any
steep layers and eliminate rapid solution changes in space, thus making problem (3.4)
amenable to a classical approximation technique applied on a uniform grid. Thus motivated,
we discretise Eq. (3.4) on the uniform computational domain 	C using second-order central
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differences in space and integrate forward in time using a second-order singly diagonally
implicit Runge–Kutta method (SDIRK2), with Butcher array

c A

bT
=

� � 0

1 1 − � �

1 − � �

,

where � = (2 − √
2)/2.

Application of SDIRK2 to (3.4) gives rise to two nonlinear systems of equations,

k1 = f (tn + ��tn, vn + ��tnk1),

k2 = f (tn + �tn, vn + (1 − � )�tnk1 + ��tnk2),
(3.5)

where f is such that v̇ = f (v). From (3.5), the approximation at time tn+1 is then obtained as

vn+1 = vn + �tn((1 − � )k1 + �k2).

The solution of (3.5) is found using a Newton iteration, the convergence criterion for which
is that the size of the residual measured in the l∞ norm falls below a prescribed tolerance
KTOL = ε × 10−6, where ε is the small parameter in (2.1). In our experience, this method
generally converges in fewer than four iterations.

The SDIRK2 time integrator has an embedded scheme which is first-order accurate in
time, given by

v̂n+1 = vn + �tnk1.

Since k1 is already known, this embedded solution is obtained at no extra computational
cost. A simple error indicator is therefore obtained by measuring the difference between
the two approximations,

ERR = ‖vn+1 − v̂n+1‖l∞ .

This is included in the time-step control mechanism described in Section 3.4.

3.3. Solution of Discrete Mesh Equations

At each time step, we must solve the discretised mesh equations (3.2) for x (and a similar
set for y). That is, we have to solve the linear systems

Qx = z1, Qy = z2 (3.6)

for the new grid coordinates, where Q is of size (N − 1)2 × (N − 1)2. Using the subscript
notation 

 N W N N E

W C E

SW S SE




to represent the relative positions of nodes in a standard nine-point stencil, the entries of a
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row of Q (for nodes away from the boundary) are given by

Pc




q
4 bN W −q

(
cN + h

2 eN
) − q

4 bN E

−q
(
aW − h

2 dW
)

1 + 2q(aC + cC ) −q
(
aE + h

2 dE
)

− q
4 bSW −q

(
cS − h

2 eS
) q

4 bSE


 ,

where q = N 2�tn+1 and PC is the spatial balancing parameter corresponding to the central
node. Because the mesh equations have to be solved up to MAXPASS times at every time
step, it is essential to have an efficient solution algorithm for (3.6).

As N increases, direct solution of these systems quickly becomes impractical. We there-
fore adopt an iterative approach, which has the added attraction that the solution at the
previous time step can be used to provide a good initial guess at each stage. The coefficient
matrix Q in (3.6) is nonsymmetric so the popular Bi-CGSTAB method [18] is an appropriate
choice. The convergence rate of this algorithm, which depends on the eigenvalue spectrum
of the coefficient matrix, can be improved by introducing the concept of preconditioning.
Theoretically, this is equivalent to replacing Q with a preconditioned matrix Q̂−1 Q whose
eigenvalue spectrum facilitates faster Bi-CGSTAB convergence, by having more “clustered”
eigenvalues. The choice Q̂ = Q is perfect in terms of clustering the eigenvalues: however,
as the Bi-CGSTAB algorithm involves solving a system with Q̂ as coefficient matrix at each
(half) iteration, this is not a practical idea. Clearly, there is a trade-off between gaining fast
Bi-CGSTAB convergence and solving systems involving Q̂ cheaply.

Here we will compare the performance of two common preconditioners. The first is di-
agonal (Jacobi) preconditioning, that is, setting Q̂ = diag(Q), which scales the eigenvalues
of Q in a relatively simple way. It is extremely cheap to implement and is sometimes sur-
prisingly effective. A plot of the spectrum of a typical matrix Q (with N = 32) is shown in
Fig. 2a: the effect of applying diagonal scaling is seen in Fig. 2b. The second preconditioner
considered is an incomplete LU (ILU) factorisation (see, for example, [1, 16]), where sparse
lower and upper triangular matrices L and U are found such that LU � Q. If Q̂ = LU is a
good approximation to Q, the eigenvalues of the preconditioned system are well clustered
around unity. At the same time, forward and backsubstitution offer an effective way of im-
plementing the preconditioner solves required by Bi-CGSTAB. The major expense comes
from forming the factors themselves, but we note that this need only be done once per
pass, as the x and y systems have the same coefficient matrix. We consider the type of ILU
factorisation where the level of approximation is regulated by choosing a drop tolerance �.
After each column of L and U has been calculated, all entries in that column which are
smaller in magnitude than � are “dropped” from L or U . The amount of fill-in depends on
the choice of �; for example, choosing � = 0 would produce the full LU factorisation of Q.
In all of our tests, the method has performed well with a drop tolerance of 1 × 10−4 times
the norm of the relevant column of Q. The effect of this preconditioner on the eigenvalues
of Q is shown in Fig. 2c. The eigenvalues of the preconditioned system are arranged in
a very tight cluster around unity. This is ideal for Bi-CGSTAB, and we would expect the
iterative method to converge in a very small number of iterations.

In the following numerical results, the iteration counts and CPU times shown are average
values over the first 60 time steps for the given problem. Our numerical tests have shown
that the performance of all of the methods is almost independent of many of the parameters
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FIG. 2. Eigenvalue spectra of a typical matrix Q. (a) No preconditioning, (b) diagonal scaling, (c) ILU.

in the overall solution algorithm, for example choice of monitor function, spatial balancing
parameter, front direction, and number of passes. We therefore only present results for a
sample problem with ε = 5.0 × 10−3, BM monitor matrix, MAXPASS = 4, and � = 0,
where � gives the direction of propagation as defined at (2.1). These are the parameters
which give rise to the matrix Q used in Fig. 2 (with N = 32). Table I contains information
on the average number of Bi-CGSTAB iterations per linear system k, the average CPU time
per Bi-CGSTAB iteration titer, and the average CPU time taken to form the preconditioner
tpre. The resulting average total time spent solving the linear systems (3.6) at each pass
is tpass = tpre + 2ktiter. For completeness, we also include CPU times for using a direct
solver. Clearly, ILU provides a relatively cheap and efficient way of solving the MMPDE
linear systems at each pass. This is due to its excellent eigenvalue-clustering property, as
highlighted above. Finally, we note that as changes in the grid from pass to pass are usually
relatively small, we also investigated the possibility of using ILU factors “frozen” from the
previous pass rather than recomputing them (as is clear from Table I, calculating the factors
is the main expense of ILU). However, at least for the size of problem considered here, the
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TABLE I

Iteration Counts and CPU Times (Averaged over the First 60 Passes) for Sample Problem

with � == 5.0 × 10−3, BM Monitor Matrix, and MAXPASS == 4

Diagonal scaling ILU
Direct

N k titer tpre tpass k titer tpre tpass tpass

16 16.10 0.0062 0.00 0.20 0.88 0.0227 0.02 0.05 0.09
32 31.29 0.0163 0.00 1.02 0.99 0.0707 0.14 0.28 1.21
64 60.55 0.0639 0.00 7.74 1.06 0.3302 1.08 1.78 9.37

128 103.33 0.3024 0.002 62.52 1.38 1.6667 8.94 13.54 75.26
256 159.61 1.3064 0.07 417.09 2.01 7.2139 68.53 97.53 799.54

increase in the number of Bi-CGSTAB iterates required outweighed the benefits of reducing
factorisation times in this way. The timings presented in Section 4 are therefore based on
calculating new ILU factors at each pass. This has proved to be a robust and efficient method
for all problems tested.

3.4. Time-Step-Size Control

Essential to the success of a solution-adaptive scheme is the implementation of an effective
time-step control mechanism. This requires the availability of a reliable error indicator. As
described in Section 3.2, the SDIRK2 scheme has an embedded first-order SDIRK time
integrator which gives rise to an error indicator ERR with no additional computational effort.
The user prescribes an absolute tolerance ERRTOL reflecting the desired level of accuracy.
If at time level tn ERR > ERRTOL, the solution at tn+1 is rejected and is recomputed
with a smaller time step. If ERR ≤ ERRTOL, then the solution is accepted and integration
continues to the new time level tn+2 = tn+1 + �tn+1 with

�tn+1 = �tn min

(
MAXFAC, max

(
MINFAC,�

(
ERR

ERRTOL

) 1
2

))
. (3.7)

A detailed description of this time-step control mechanism is given in Hairer and Wanner
[11]. While ERR gives an indication of the error incurred in the lower-order approximation
v̂ , in practice we carry forward the second-order solution v .

The approach outlined above is standard. However, as observed in [7], time-step control
based solely on the physical solution does not constitute a reliable mechanism for a moving
mesh method. This is because the error indicator ERR is insensitive to small inaccuracies in
the grid point locations—this is a further consequence of the observations in [2]. Thus, over
a number of time steps, the grid drifts away from features of the solution without degrading
the error indicator. This problem is eliminated by including a mesh error indicator in the
time-step control mechanism. When MAXPASS > 1, a simple indication of the accuracy
of the grid is given by

MESHERR = ‖xn+1 − ox‖l∞ ,

where ox denotes the mesh on the previous pass of the decoupled algorithm (see Fig. 1).
Again, the user prescribes a parameter MESHTOL which should be linearly dependent on
the singular perturbation parameter ε. If at time level tn MESHERR > MESHTOL, the
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solution at time tn+1 is rejected and recomputed with a smaller step size. If MESHERR ≤
MESHTOL, the solution at time tn+1 is accepted and integration proceeds to the new time
level tn+2 = tn+1 + �tn+1 with

�tn+1 = �tn min

(
MAXFAC, max

(
MINFAC,

(
log(MESHERR)

log(MESHBAL)

)))
, (3.8)

where MESHBAL is a user-prescribed parameter satisfying MESHBAL < MESHTOL. In
practice, a value for �tn+1 is computed using both (3.7) and (3.8), and the smaller of the
two is adopted.

4. NUMERICAL EXPERIMENTS

In this section, we present numerical results that demonstrate properties of the MMPDE
algorithm which have been described earlier.

The first set of results is related to the initial grid, which is computed by integrating the
discretised MMPDE (3.2) and (3.3) forward in time to a steady state (MTOL = 0.1ε). The
monitor matrix is approximated from the given initial solution using the discretisation of
either the AL monitor function (2.10) or the BM monitor function (2.11). We tabulate the
error incurred in interpolating the initial data using a piecewise bilinear function on
the steady-state grid. In order to appreciate layers in the solution, the error is measured
in the L∞ norm, which we approximate by sampling the error on a 10 × 10 uniform grid
on each mesh cell (�C )i, j := [�i , �i+1] × [� j ,� j+1] in computational space. In Table II we
present results for the AL and BM monitor functions. We observe that for the BM monitor
function, as the grid density N is increased, the error converges at a rate above second order.
In contrast, for the AL monitor function the rate of convergence with N is sub-second order.
A consequence of this is a difference of an order of magnitude in the interpolation error on
the most dense grid, N = 256.

The second set of results is for the time-dependent problem (2.1): from the initial grid
we integrate forward in time to T = 0.5 using the algorithm in Fig. 1. We compare the per-
formance of the BM and AL monitor functions, using both the standard one-pass approach
(MAXPASS = 1) described in [12] and the multipass approach (MAXPASS = 4) introduced
for one-dimensional problems in [7]. For each of these four cases, we consider a range of
values of N and appropriate values of ETOL. We tabulate the maximum value of the global
l∞ error over all time steps. We also note the computational cost, measured in CPU seconds
and normalised by the cheapest run (the BM monitor matrix with MAXPASS = 1 on a

TABLE II

Interpolation Error on Initial Grids for � == 5.0 × 10−3

BM monitor AL monitor

N ‖e‖L∞ Conv. rate ‖e‖L∞ Conv. rate

8 2.936 × 10−1 — 3.050 × 10−1 —
16 5.208 × 10−2 2.50 7.546 × 10−2 2.02
32 1.041 × 10−2 2.32 1.987 × 10−2 1.92
64 1.851 × 10−3 2.50 6.992 × 10−3 1.51

128 3.272 × 10−4 2.50 2.254 × 10−3 1.63
256 6.806 × 10−5 2.27 6.806 × 10−4 1.73
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grid of density 16 × 16). In all runs, the following parameters are used: MINFAC = 0.1,
MAXFAC = 2, � = 0.75, MESHBAL = 1.5ε, and MESHTOL = 2ε. Our numerical experi-
ments have shown that the performance of the algorithm is insensitive to moderate variation
in these parameters.

Tables III and IV show results for the multipass algorithm using the BM and AL monitor
functions, respectively. We see that as for the initial grid calculations, the error converges
at a rate significantly higher for the BM monitor function than for the AL monitor function.
This leads to a difference of more than an order of magnitude in the global error on the
finest grid, N = 256. In Beckett et al. [7] we observed that for a one-dimensional problem,
the l∞ error converged at a rate of O(N−2) and O(N−1) for the BM and AL monitor
functions, respectively. These rates of convergence are close to those observed in Tables III
and IV.

Tables V and VI show results equivalent to those described above but by using the single-
pass algorithm. It is immediately apparent that the cost of an individual time step is cheaper
for the one-pass approach than for a multipass approach. However, with MAXPASS = 1
the grid at the new time level is generated from solution data at the previous level. This
causes the grid to lag behind the solution of the physical PDE and severely restricts the
time-step size. For both the BM and the AL monitor matrices we see that for each particular
parameter pair N and ETOL, the one-pass method is between two and four times cheaper
than the corresponding run for the four-pass algorithm. However, in contrast, for each run
the global error is larger for the single-pass scheme. Once again, Tables V and VI show that
a higher rate of convergence is achieved for the BM monitor function.

The information in Tables III–VI is summarised in Fig. 3, where we show a log–log plot
of the l∞ error against the cost (CPU time) for each of the four cases. The notation system is
that AL1 represents the AL monitor function with MAXPASS = 1 and so on, in an obvious
manner. The thick plain line is a reference of slope −1. For both pass strategies, the cost
graph for the BM monitor function is steeper than for the AL monitor function, confirming
the improved rate of convergence which has been observed. Furthermore, the BM monitor
function gives quantitatively better accuracy. Figure 3 also clearly demonstrates the cost
advantage which may be attributed to the multipass algorithm. Although the cost of an
individual time step is much cheaper for MAXPASS = 1, one is restricted from taking that
large time steps because the grid lags behind the solution of the physical PDE. Hence, the
overall cost of the one-pass strategy is significantly higher, independent of the choice of
monitor function.

Figure 4 shows numerical results for the solution of problem (2.1) on the time interval
t ∈ [0, 1.5] using the BM monitor matrix, with parameters MAXPASS = 4, N = 32, and

TABLE III

Four-Pass Algorithm with BM Monitor Matrix: � == 5.0 × 10−3,

t ∈ [0, 0.5], � == 0.0, � == 0.1

N ETOL ‖e‖l∞ Conv. rate Cost

16 8.00 × 10−3 2.441 × 10−2 — 4.7
32 2.00 × 10−3 7.326 × 10−3 1.74 17.8
64 5.00 × 10−4 2.384 × 10−3 1.62 82.6

128 1.25 × 10−4 5.450 × 10−4 2.13 936.9
256 3.00 × 10−4 1.430 × 10−4 1.93 6026.2
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TABLE IV

Four-Pass Algorithm with AL Monitor Matrix: � == 5.0 × 10−3,

t ∈ [0, 0.5], � == 0.0, � == 0.1

N ETOL ‖e‖l∞ Conv. rate Cost

16 8.00 × 10−3 3.117 × 10−2 — 8.1
32 2.00 × 10−3 2.074 × 10−2 0.59 26.7
64 5.00 × 10−4 1.207 × 10−2 0.78 227.0

128 1.25 × 10−4 5.726 × 10−3 1.08 4514.2
256 3.00 × 10−5 2.138 × 10−3 1.42 37551.0

TABLE V

One-Pass Algorithm with BM Monitor Matrix: � == 5.0 × 10−3,

t ∈ [0, 0.5], � == 0.0, � == 0.1

N ETOL ‖e‖l∞ Conv. rate Cost

16 8.00 × 10−3 4.487 × 10−2 — 1.0
32 2.00 × 10−3 1.804 × 10−2 1.32 4.6
64 5.00 × 10−4 6.140 × 10−3 1.55 35.4

128 1.25 × 10−4 1.809 × 10−3 1.76 472.4
256 3.00 × 10−5 4.849 × 10−4 1.90 4171.6

TABLE VI

One-Pass Algorithm with AL Monitor Matrix: � == 5.0 × 10−3,

t ∈ [0, 0.5], � == 0.0, � == 0.1

N ETOL ‖e‖l∞ Conv. rate Cost

16 8.00 × 10−3 8.257 × 10−2 — 1.5
32 2.00 × 10−3 6.058 × 10−2 0.45 8.6
64 5.00 × 10−4 3.153 × 10−2 0.94 108.0

128 1.25 × 10−4 1.387 × 10−2 1.18 1796.9
256 3.00 × 10−5 5.301 × 10−3 1.39 12881.7
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FIG. 3. Cost comparison of BM and AL monitor functions using various pass strategies.
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FIG. 4. Solution of the viscous Burgers equation, ε = 5.0 × 10−3, t0 = 0.25, and N = 32, using BM monitor
matrix. Solution is plotted at time t = 0 and 0.6.
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ETOL = 2.0 × 10−3. The top and middle rows of plots show two snapshots of the solution
and corresponding grid at t = 0 and 0.6. We observe significant adaptation of mesh points
into the layer, leading to good resolution of the planar front and no visible oscillations in
the solution. The grid is clustered appropriately both in the interior and at the boundary of
the domain. The bottom row of plots presents the history of the nodal error and time-step
size. As can be seen, away from t = 0.75, the nodal error and time-step size vary little as the
solution evolves, confirming the reliability of both the BM monitor function and the time-
step selection procedure. At time t = 0.75, the front lies along the line between coordinates
(1, 0) and (0, 1). At this time, additional numerical difficulties are introduced as clustering
of the grid points switches from one boundary edge to another. This provides a good test
of the robustness of the multipass algorithm. As can be seen from Fig. 4, the time-step size
is reduced by a factor of approximately two in the neighbourhood of t = 0.75 in response
to this localised numerical difficulty. The increase in nodal error is, in part, due to a spatial
component which cannot be completely eliminated by a reduction in the time-step size.
However, it is clear that the time-step selection is robust and any increase in nodal error is
localised around t = 0.75.

5. CONCLUSIONS AND COMMENTS

In this study, we have used the two-dimensional Burgers equation as a model for investi-
gating several important aspects of moving mesh partial differential equations. The moving
mesh algorithm used in the numerical experiments is based on the strategy developed by
Huang and Russell [13, 14] and is derived from the gradient flow equation of a carefully
chosen functional. We have shown that the selection of monitor function has a significant
effect on the accuracy of the computed results. In particular, we have compared the perfor-
mance of the commonly used arclength monitor function with one proposed by Beckett and
Mackenzie [4–6], showing that the latter achieves a significantly higher rate of convergence.

The moving mesh PDEs are solved by decoupling the mesh equations from the physical
PDE, as in our earlier study of problems in one space dimension [7]. The algorithm uses
a backward Euler method for the time integration of the linearised mesh equations and a
second-order singly diagonally implicit Runge–Kutta method (SDIRK2) for the physical
PDE.

A key contribution of this work is to demonstrate that the efficiency, accuracy, and robust-
ness of the moving mesh algorithm all depend on the method adopted for solving the decou-
pled system. In addition, we have highlighted the importance of using an efficient precon-
ditioned iterative method for the solution of the mesh equations. Finally, the algorithm that
we have proposed makes use of effective time-step control mechanisms that employ error
indicators for the accuracy of the grid and the accuracy of the solution of the physical PDE.
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